Finite p -groups in which every cyclic subgroup is 2-subnormal
نویسندگان
چکیده
منابع مشابه
Groups in which every subgroup has finite index in its Frattini closure
In 1970, Menegazzo [Gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 48 (1970), 559--562.] gave a complete description of the structure of soluble $IM$-groups, i.e., groups in which every subgroup can be obtained as intersection of maximal subgroups. A group $G$ is said to have the $FM$...
متن کاملFinite p - Groups which Have a Maximal Subgroup is Full - Normal ( p > 2 )
Let G be a finite p-group, M is a subgroup of G. M is called fullnormal if for any subgroup K of M, we have K G. In this paper, We determine the structure of finite p-groups which have a maximal subgroup is full-normal(p > 2). Mathematics Subject Classification: 20D10, 20D15
متن کاملgroups in which every subgroup has finite index in its frattini closure
in 1970, menegazzo [gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali, atti accad. naz. lincei rend. cl. sci. fis. mat. natur. 48 (1970), 559--562.] gave a complete description of the structure of soluble $im$-groups, i.e., groups in which every subgroup can be obtained as intersection of maximal subgroups. a group $g$ is said to have the $fm$...
متن کاملFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2002
ISSN: 0017-0895
DOI: 10.1017/s0017089502030094